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ABSTRACT 
 

The creation of emission data for a photochemical quality-forecasting model requires the 
efficient and accurate estimation of temporal and spatial variations of emission sources of ozone 
precursors.  To achieve this goal, the existing emission inventory preparation and processing systems 
need to be streamlined and modified.  The critical emission precursor pollutants for ozone are volatile 
organic compounds (VOCs), nitric oxides (NOx), and carbon monoxide (CO).  The spatial variability 
and temporal behavior of these compounds are influenced both by meteorological conditions and by 
anthropogenic activities.  The key complexities in the simulation of the temporal and spatial variations 
of these compounds are the biogenic sources, the on-road mobile sources, and major fossil-fuel point 
sources. The processing of the emission for biogenic sources can be streamlined by linking the 
preparation of meteorological output fields for the air quality chemistry model with the calculation of 
biogenic emission. The processing of temperature-dependent emission for mobile sources can be 
streamlined by using the MOBILE5B (or MOBILE6) model to create simple temperature regressions to 
apply to normalized emission data prior to the actual forecast.  The temperature/emission relationship 
can then be used in a very efficient calculation for the actual emission calculation. Finally, the 
processing of point source emission from major power plants can be streamlined by using historical 
CEM (Continuous Emission Monitoring) data to create temperature/emission relationships that can be 
used to estimate current power plant emission in an air quality forecast model.  This streamlined 
approach will be compared to the typical emission processing method used in a non-operational 
environment.  
 
INTRODUCTION 
 

The U. S. Environmental Protection Agency in cooperation with the National Weather Service is 
developing a National Air Quality Forecasting System to provide timely forecasts of ozone, particulate 
matter, and other pollutants to prevent or reduce adverse effects of these hazards.  The planned 
capabilities of the modeling system can be divided into the initial phase, the medium-term plan, and the 
long-term plan.  The initial capability of the system is to develop and validate 1-day forecasts of ozone 
(O3) for the Northeastern US and expand nationwide within 5 years.  The medium-term (5-7 years) goal 
is the development and deployment of a nationwide capability to forecast particulate matter 
concentration for particulate size less than or equal 2.5 microns (PM 2.5).  In the long-term plans (within 
10 years), the forecast range of the air quality system will be extended to 48-72 hours and include a 
broader range of significant pollutants. 

 
For the Initial Operating Capability (IOC), the target deployment is September 14, 2004 for the 

Northeast US with one-day ozone forecasts.  Hourly ozone concentrations and an eight-hour average of 
ozone in parts per billion (ppb) will be forecast for the surface layer.  Forecasts at additional vertical 
levels of 50 meters and 500 meters above the surface will be added.  The forecast will be delivered twice 
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daily.  The primary forecast for the following day will be delivered by 1730 Coordinated Universal 
Time (UTC) and will be valid for 24 hours through 4 UTC day 3.  The updated forecast will be for the 
current day and will be delivered by 1300 UTC and will be valid for 15 hours through 4 UTC, day 2.  
The National Weather Service will be responsible for the operational forecasts while the EPA will be 
developing the modeling system.  These operational requirements specify that the post-processing of the 
meteorological data, the emission processing and air quality chemistry model simulation be completed 
in less than five and a half hours.  Since the post-processing of the meteorological data and the air 
quality chemistry model are typically very time consuming, the emission processing time needs to be 
minimized to less than 15 minutes per run.  A typical emission-processing scenario in a research 
environment on a national domain for one day takes up to 3 hours of time on a single CPU.  Therefore, 
in an operational environment, the emission processing needs to be streamlined with all non-
meteorological dependent operations completed well in advance of the forecast.  Only the meteorology 
dependent component of the emission processing needs to be done operationally.  The accuracy of the 
emission processing can be maintained and the forecast can be completed within the required time 
constraints. 

 
EMISSION PROCESSING SYSTEM 

 
An emission processing system requires meteorological inputs, an emission inventory, and other 

ancillary input files. This information is used to do temporal allocation, spatial allocation, and chemical 
speciation of the emission inventory to create time-dependent gridded input for an air quality model.  An 
emission processing system requires both meteorologically dependent inputs (such as wind and 
temperature) as well as static non-meteorological inputs (spatial surrogates, land use data, emission 
inventories).  These inputs are used independently by different components of the emission processing 
resulting in many opportunities for parallelism.  In an operational environment, the non-meteorological 
component of the emission processing can be separated from the meteorological component thereby 
reducing the amount of processing that has to be done on an operational basis. 
 

Our approach to emission processing for an air quality forecasting system is to split the emission 
processing into two parts: the meteorologically dependent component and the non-meteorologically 
dependent component.  The meteorologically independent part includes stationary area source 
processing, non-road mobile source processing, the calculation of normalized biogenic calculations, the 
calculation of temporal factors, speciation factors, and grid factors for point sources, and the 
temperature-independent component of mobile source processing.   The emission processing system to 
be used for air quality forecasting is SMOKE1 (Sparse Matrix Operator Kernel Emission).  SMOKE uses 
high performance computing sparse matrix algorithms.  The sparse matrix approach permits rapid and 
flexible processing of emission data2.  Processing steps are separated into independent operations 
wherever possible.    The meteorologically independent calculations can be done with the existing 
programs within SMOKE except that the temperature dependent component of the mobile source 
processing cannot directly be separated from the rest of the mobile source processing.   SMOKE creates 
mobile source emission factors with MOBILE5b for a wide variety of exhaust and evaporative processes 
and pollutants.  MOBILE5b is a vehicle emission factor model, which is a software tool for predicting 
gram per mile emission of hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NOx), 
carbon dioxide (CO2), particulate matter (PM) and air toxics from cars, trucks, and motorcycles under 
various conditions.3  The MOBILE5b model has been integrated into SMOKE.  All future releases of 
SMOKE will include integration with the latest mobile source emission model (Mobile6).  The 
discussions here with respect to MOBILE5b are also applicable for Mobile 6.  MOBILE5b inputs 
include an ongoing inspection/maintenance programs, reformulated gasoline, vehicle registrations, fuel 
volatility parameters, vehicle speeds, and temperature.   Therefore, mobile source emission processing 
becomes more complex than any of the other source processing.  

 



We will focus our attention first on the mobile source processing, since the meteorological 
component (i.e. the temperature dependence) is an intrinsic part of the MOBILE5b model and we wish 
to separate this dependence from all the other parameters in the SMOKE/MOBILE5b system.  Our 
emission processing system (SMOKE) uses the MOBILE5b model to estimate mobile source emission 
from vehicle activity data.   
 

For mobile source emission, we propose to separate the temperature dependence of the mobile 
source emission processing from all other non-meteorological dependencies in the SMOKE/MOBILE5b 
by running the SMOKE/MOBILE5b model in two different modes.  First, using a reference temperature 
of 75 F, (the temperature at which mobile source emission are minimum in the MOBILE5b model4), the 
SMOKE/MOBILE5b model is used to create emission estimates for the modeling period assuming a 
constant temperature.  The emission factors generated under this assumption capture the speciation, the 
temporal factors due to anthropogenic activity, and the vehicle fleet information for each grid cell in the 
domain.  These normalized emission factors are then saved for future use.  Second, a flag in the 
SMOKE/MOBILE5b model allows the temporal factors to remain constant for all hours.  Using this 
flag, the temperature only dependence can be estimated for each grid cell if ambient temperature data 
are available for some past time period.  Using historical temperature data, emission factors that are only 
dependent on temperature are calculated.  Next, we use a nonlinear least squares approach to create a 
relationship between temperature and emission rates for each grid cell and for each time step: 

 
)),(,,(),,( 0TtTyxftyxE ss = .     (1) 

 
In Equation (1), T is the temperature at the grid cell, 0T  is a reference temperature and s  is a chemical 
species (e.g. NO) from the chemical mechanism of the air quality model.  We approximate the 
relationship between an emission rate and temperature by doing a nonlinear least squares fit to the 
temperature and emission rates.   We only need to determine the function ),,,,( 0TTtyxf s  for each 
model species at each grid cell.  For carbon monoxide (CO), we use a sixth order polynomial: 
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For NO, and NO2, we use a piecewise linear function that is continuous at the reference temperature: 
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For Volatile Organic Compounds (VOCs), we use a quadratic function given by 
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VOC emission are calculated by MOBILE5b for several emission forming processes: exhaust 

VOC emission, evaporative VOC emission which is the sum of “hot soak”, ”crankcase”, and “weighted 
diurnal emission”, “resting loss” VOC emission, “running loss” VOC emission, and “diurnal” VOC 
emission.  “Exhaust” emission are from the tailpipe of the vehicle.  “Running loss” emissions are 
evaporative emission not accounted for by other processes.  “Resting Loss” evaporative emission are 
from resting vehicles, representing the time period after the hot-soak is complete, but not associated with 



diurnal temperature variation.  “Weighted diurnal” emissions represent evaporative emission from 
carbon canisters that have been sitting for a partial day, full day, or multiple days.  “Diurnal” emissions 
are evaporative emission due entirely to diurnal variations in temperature. MOBILE5b uses only the 
minimum and maximum temperature during the day to estimate this component.  “Crankcase” emissions 
are evaporative emission emanating from the crankcase of a vehicle. 

 
The nonlinear least squares calculation is performed using the temperature only dependent 

emission factors and the temperature field for each species and for each grid cell in the domain for a 
sufficient time period of available meteorological information.  The coefficients 6543210 ,,,,,, aaaaaaa for 
each grid cell are stored.  These coefficients together with the prescribed functions for each species and 
normalized emission factors calculated previously are then combined to generate the operational 
estimate of the mobile source emission according to: 
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This final emission calculation is extremely fast and is the only part of the mobile source emission 
processing that has to be performed operationally. 

 
The nonlinear least squares calculation is undertaken with MINPACK5.  MINPACK is a free, 

portable library for solving nonlinear systems of equations and nonlinear least squares problems. The 
specific algorithm from MINPACK uses an analytic specification of the Jacobian matrix and minimizes 
the sum of the squares of the nonlinear functions by a modification of the Levenberg-Marquardt 
algorithm6.  This algorithm is well suited to this problem since it allows the user to provide the 
subroutine, which calculates the analytic functions and the Jacobian of the analytic function. 

 
For biogenic emission calculations, the Biogenic Emission Inventory System7 (BEIS) is already 

computationally very fast.  Therefore, only minor adjustments to streamline this component of the 
emission processing are required for air quality forecasting. 

 
For point source emission calculations, the plume rise method is meteorologically dependent.  In 

addition, CEM (Continuous Emission Monitoring) information from power plants is not available in real 
time.  Therefore, the temporal factors for SO2 and NOx from power plants will be estimated in the same 
way the other pollutants and other sources without CEM data are estimated.  Temporal factors 
dependent on the Source Classification Code (SCC) of the point source will be used in the air quality 
forecast system.   Since the plume rise calculation is meteorological dependent, this calculation will be 
performed operationally for each point source.  Should this calculation require too much time for all 
point sources, this calculation could be simplified and only applied to the larger sources.  We propose to 
use the plume rise calculation in SMOKE in the meteorological component of the emission processing. 
However, the mapping of the point sources to grid cells, the temporal factor calculations, and speciation 
can be done and stored in matrices in advance of the operational component of the emission processing.  
 
PRELIMINARY RESULTS 

 
We will focus on the nonlinear least squares approximation applied to mobile source emission 

for a 32km continental domain for a June 12-30, 1999 time period.  Using the methodology described 
above, we will first examine a single 32km grid cell of Atlanta, GA for this time period and compare the 
MOBILE 5B emission rates calculated with SMOKE with the emission rates computed using the 
nonlinear least squares approximation. 

 



Figure 1 shows the relationship between the CO emission rate and temperature for both 
SMOKE/MOBILE 5B and a sixth order polynomial least squares approximation for every hour for the 
period of June 12-30, 1999.  We note the minimum in the emission rate at approximately 297°K (75°F).  
A minimum emission rate at 75 degrees is built into the MOBILE5b model. After application of the 
nonlinear least squares method to all grid cells for the entire time period and summing up the emission 
for each 24 period, we are able to see the accuracy of the nonlinear least squares method.  Figure 2 
shows the domain totals for the continental US for each day from June 12 to June 30, 1999 for CO.  We 
see that the nonlinear least squares approximation for the emission is consistently lower by 1- 2% each 
day compared to the emission from SMOKE/MOBILE5b. 

 
For NO and NO2 emission, a piecewise linear function was used to approximate the temperature 

dependence of the mobile source emission.  Figure 3 shows the emission rate as a function of 
temperature for a single 32km grid cell of Atlanta, GA for NO.  Figure 4 shows the domain totals for 
NO for the continental US for each day from June 12 to June 30, 1999.  We see that the least squares 
approximation for the emission is in very good agreement, less than 0.2% difference between the Mobile 
5B emission and the least squares approximation.   

 
For VOC emission, a quadratic function was used to approximate the temperature dependence of 

the mobile source emission.  We use a quadratic function for all VOC species since MOBILE5b 
calculates VOC emission directly. MOBILE5b calculates VOC emission for several emission forming 
processes as indicated previously.  We created separate functions for each VOC species related to the 
chemical mechanism to be used in the air quality model. This simplifies the mobile source calculation 
that is done operationally since chemical speciation, spa tial allocation, and temporal allocation can all be 
included in the mobile source emission factors.  We look at the temperature dependence of the emission 
rate from one VOC species, paraffin (PAR), from the carbon-bond-four (CB4) chemical mechanism.  
Figure 5 shows the emission rate of paraffin as a function of temperature for a single 32km grid cell of 
Atlanta GA. We note that there is more variation in the emission rate for a single temperature. This is 
likely due to fact that all the VOC emission-forming processes are considered as a group.  Figure 6 
shows the domain totals for PAR for the continental US for each day from June 12 to June 30, 1999.  
The difference between MOBILE5b and the nonlinear least squares approximation is on the order of 3 –
4 %. 

 
CONCLUSIONS 

 
The separation of the meteorologically dependent component from the non-meteorologically 

dependent component of emission processing is crucial to the development of a rapid, operational 
emission processing system for an operational air quality forecast system.  The meteorological 
dependence of mobile source emission in the MOBILE5b model and the complex nature of the 
MOBILE5b model requires the development of an approximation to the MOBILE5b model that is very 
fast computationally, although not as accurate as the MOBILE5b model itself.  We have demonstrated 
that the use of a nonlinear least squares approximation of the dependence of emission rates to 
temperature can allow for a very fast, yet approximate method for calculating mobile source emission in 
an air quality forecasting model.  The nonlinear least squares method produces emission totals that are 
within 5% of the emission totals generated with the MOBILE5b model at a fraction of the computational 
time.  The emission processing in an air qua lity forecast system could be computationally fast and 
efficient by separating the meteorological dependent component of the emission processing from the 
non-meteorological dependent component.  A nonlinear least squares method can be used to 
approximate the temperature dependence of mobile source emission.  Biogenic emission calculations 
can be incorporated directly into the operational component of the emission processing. Only the plume 
rise component of the point source emission processing is done operationally in the emission processing. 
 



 
Figure 1 CO Mobile source emission for one 32km grid cell as a function of temperature 

Mobile source CO emissions for one 32km grid cell of Atlanta, GA June 12-30, 1999
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Figure 2 CO domain totals for June 12-30, 1999 

CO domain totals for June 12-30, 1999
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Figure 3 NO Mobile source emission for one 32km grid cell as a function of temperature 

Mobile source NO emissions for one 32km grid cell of Atlanta GA June 12-30, 1999
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Figure 4 NO domain totals for June 12-30, 1999 

Domain Total Emissions for NO mobile sources June 1999
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Figure 5 PAR Mobile source emission for one 32km grid cell as a function of temperature 

Mobile source PAR emissions for one 32km grid cell of Atlanta GA June 12-30 1999
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Figure 6 PAR domain totals for June 12-30, 1999 

PAR domain total emissions for June 1999
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DISCLAIMER 
 
 This paper has been reviewed in accordance with the U.S. EPA peer and administrative review 
policies and approved for presentation and publication.  Mention of trade names or commercial products 
does not constitute endorsement or recommendation for their use. 
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